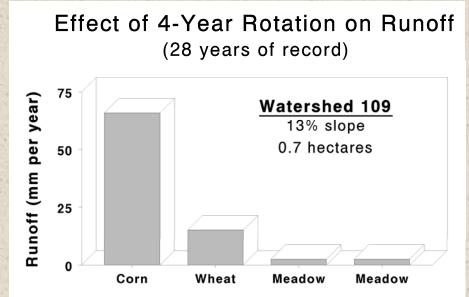

The *North Appalachian Experimental Watershed* (NAEW) was established in the 1930's and is operated by the USDA - Agricultural Research Service

At the 420 hectare NAEW, small (0.5 to 1 ha) and large (up to 120 ha) watersheds are used to assess the field-scale effects of various management practices on surface water quality

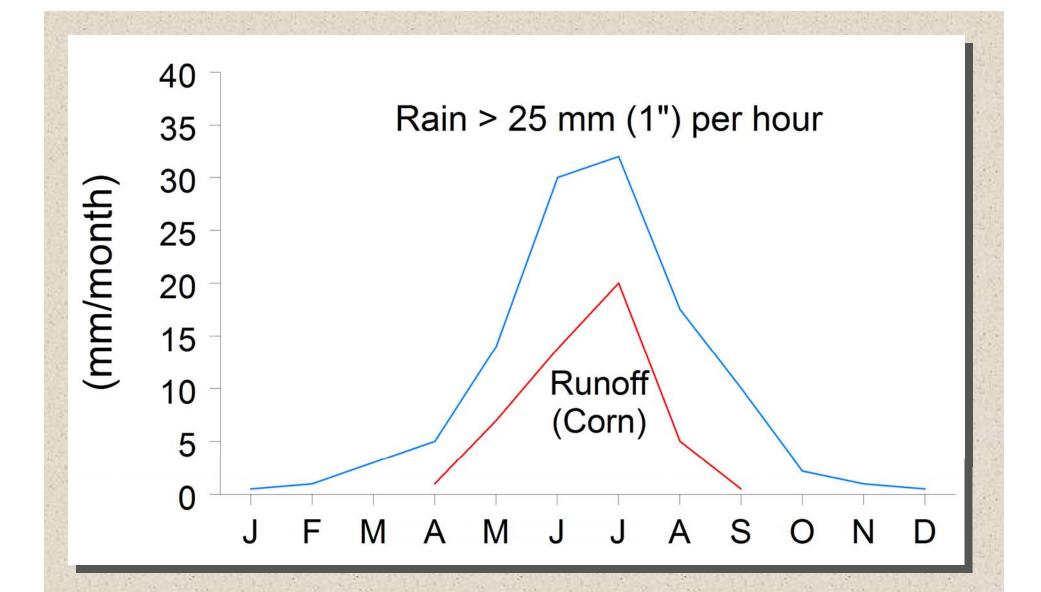
Small Tilled Watershed

Monitoring Building

ISCO Sampler Coshocton Flume Wheel


≻ H Flume

- Coshocton Wheel (Flow Proportional Sampler
- ISCO Sampler (Discrete Sampler)


Conservation Tillage from 1940's to 1960's

- 92% of the soil erosion occurred in corn years
- Contour tilling and planting reduced erosion from 15.7 to 4.7 Mg/ha/corn yr

Most of the runoff is the result of high-intensity rainfall and these events occur mostly in the months of May-July

Erosion in Big Storms (WS 115)

	Erosio	n per Storm	Cumulative Loss		
Storm Rank	Mg/ha	Tons/Acre	(% of Total)		
1	55.3	24.7	54		
2	15.0	6.7	69		
3	11.0	4.9	80		
4	2.9	1.3	83		
5	2.0	0.9	85		

More than 4000 rainstorms occurred on this prevailing practice watershed in the 28-yr period

> Five storms resulted in 85% of the total soil loss of 102 Mg/ha

Erosion in Big Storms (Cumulative % of 28-Year Total)

Storm	Improved Watersheds							
Rank	WS 103	WS 121	WS 123	WS 109	WS 113			
1	25	16	35	29	16			
2	48	31	50	52	28			
3	63	44	65	62	39			
4	72	52	75	69	47			
5	79	61	80	74	54			
6	83	67	-	78	61			
7	-	71	-	80	67			
8	-	74	-	-	73			
9	-	77	-	-	78			
10	_	80	-	-	83			

Runoff and Erosion on Corn Watersheds (May-September 1964)

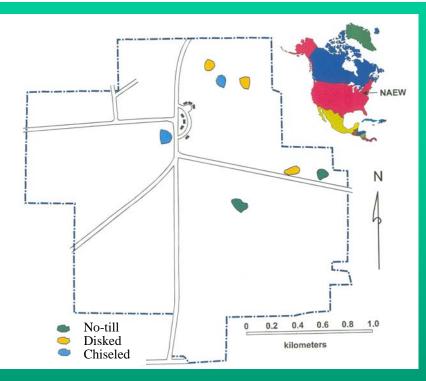
	Number	<u>Runoff</u>	Erosion
Tillage	of Events	<i>(mm)</i>	(kg/ha)
Prevailing Conventional	12	35	9946
Improved Conventional	5	15	6384
No-Till with Contour Rows	1	5	134

Severe Storm of 5 July 1969 (126 mm in 10 hours)

	<u>Slope</u>	<u>Runoff</u>	Erosion
Tillage	(%)	(mm)	(kg/ha)
Prevailing			
Conventional	7	112	48,500
Improved Conventional	6	58	7,200
No-Till with Contour Rows	21	64	70

Rainfall, Runoff, & Erosion Continuous No-till Corn since 1964

2	Year	Rainfall	Runoff	Erosion	Year	Rainfall	Runoff	Erosion
		n	nm	kg/ha		mm		kg/ha
	1964	987	9.7	nd	1989	964	7.4	38
	1965	833	0	0	1990	1321	0.3	1
	1966	772	0	0	1991	679	0	0
	1967	862	0.5	0	1992	915	0	0
2	1968	871	0	0	1993	941	1.0	3
	1969	895	4.6	12	1994	888	0	0
	1909	944	4.0 0	0	1995	911	0	0
			-	-	1996	1130	0	0
	1971	697 005	40.4	0	1997	846	9.5	25
	1972	885	0	0	1998	989	0.6	0
	1973-78		Not in Servi		1999	833	0	0
	1979	1124	3.8	9	2000	1035	0.5	0
	1980	1175	4.9	17	2001	807	0.2	1
	1981	1057	0.2	1	2002	855	0.2	0
	1982	889	0	0	2003	1079	20.9	6
	1983	1028	0	0	2004	1407	45.7	49
8	1984	907	2.3	1	2005	1087	0	0
	1985	929	0	0	2006	1099	0	0
22	1986	980	9.2	16	37 year:			
	1987	841	0.2	0	Total	35294	162.1	179
	1988	832	0	0	Average	954	4.4	5

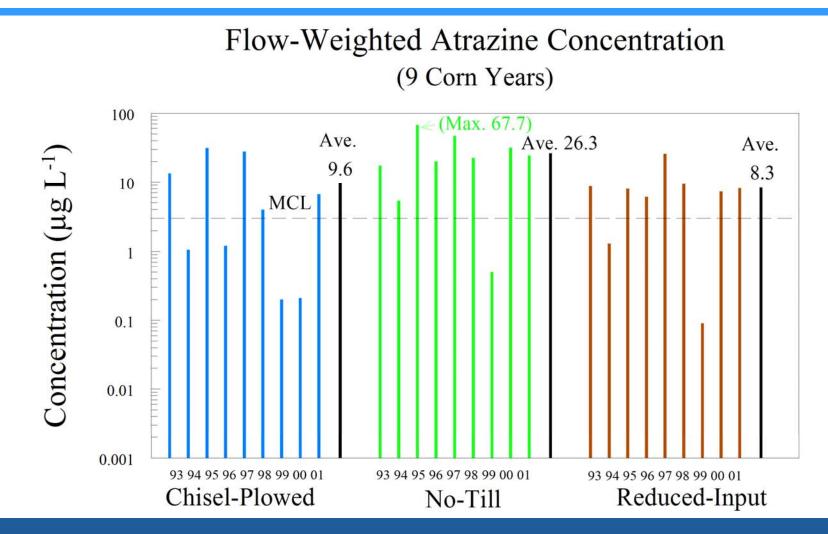

Rainfall, Runoff, & Erosion (Continuous Corn)

		Runoff		Soil]	Loss			
Year	Rainfall	No-Till	Conventional	No-Till	Conventional			
	mm		mm]	kg/ha			
1979	1124	3.8	140.2	9	491			
1980	1176	4.9	316.8	17	9500			
1981	1057	0.2	142.2	1	8590			
1982	889	0	113.2	0	2765			
4 - Year Total	4246	8.9	712.4	27	21346			
Average	1062	2.2	178.1	7	5337			
Note: No-till 9% slope								
Conventional 6%								

No-till reduced Runoff 81x and Soil Loss 762x compared to conventional tillage

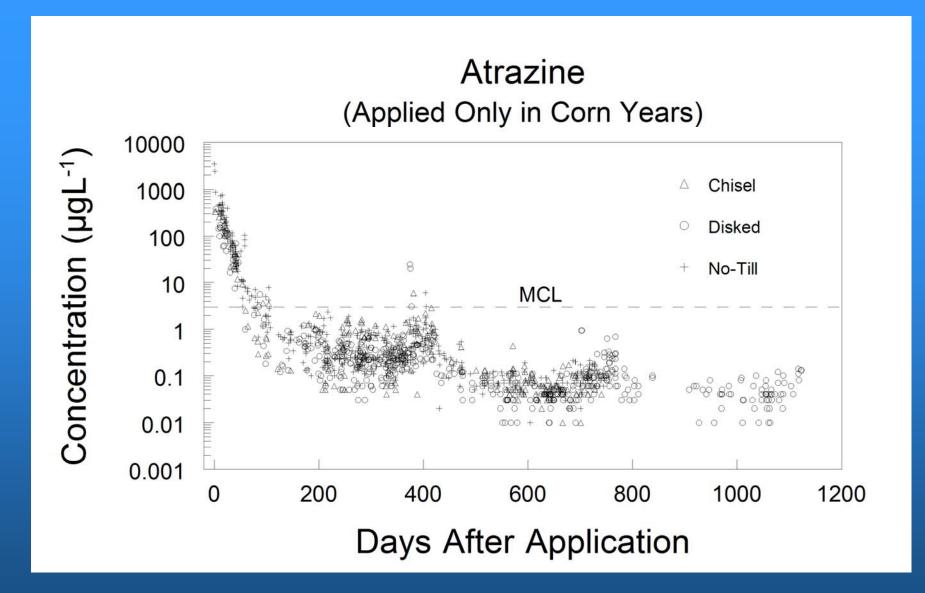
> Up to 20x year-to-year variability in soil loss with CT

Conventional tillage has not been used on watersheds since 1982



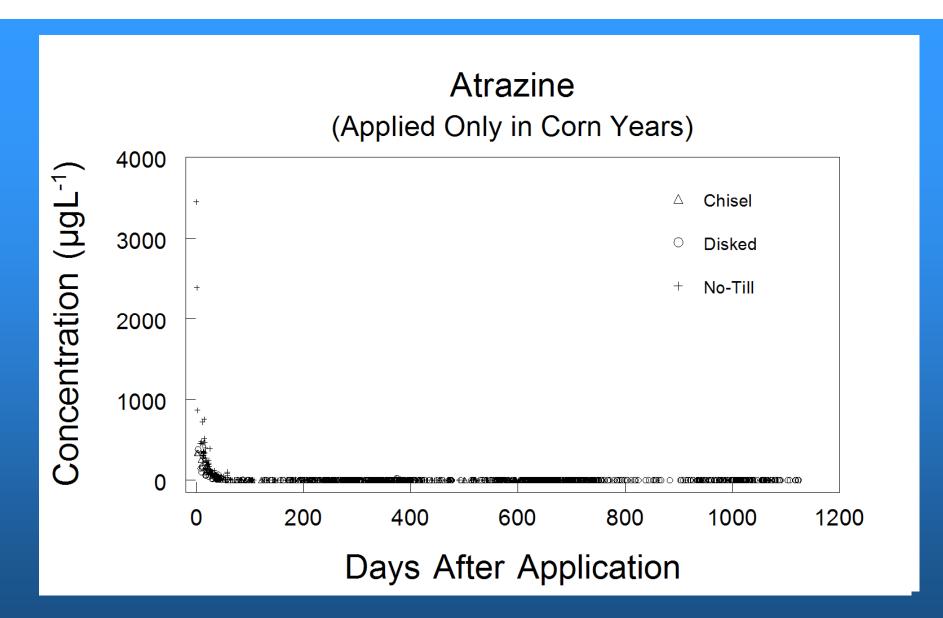
No-till Watershed

Conservation Tillage Study

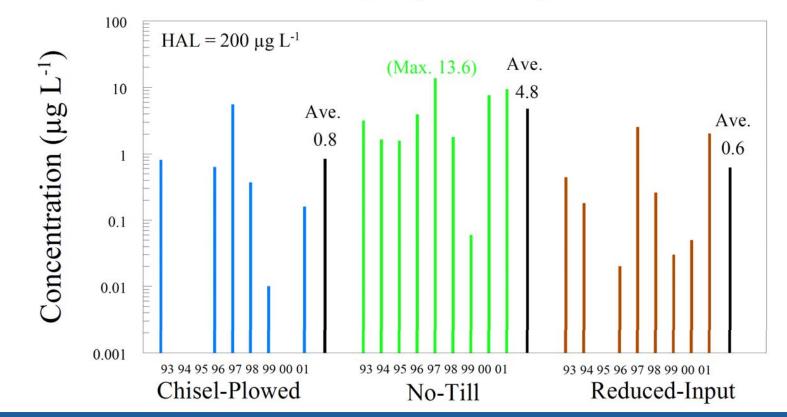

- 7 small (0.45-0.79) ha watersheds
- 2 No-till corn-soybean rotation
- 2 Chisel corn-soybean rotation
- 3 Disked corn-soybean-wheat rotation with half-rate herbicide applications (Reduced-Input)

<u>% Soil Loss in Top 5 Events</u> 6 Crop Years (1990 – 1996)								
<u>Chisel-Tilled</u> <u>No-Till</u> <u>Disked</u>								
Event Rank	WS 109	WS 123	WS 113	WS 118	WS 111	WS 115	WS 127	
1	22	36	13	8	27	23	14	
2	16	22	10	6	13	14	11	
3	13	6	10	6	11	11	9	
4	9	3	9	5	9	7	8	
5	8	2	8	4	6	7	6	
Total	68	69	50	29	66	62	<i>48</i>	
Ave. (kg/ha/yr) 1287 577 1022*								
Top 5 eve	ents (Ave	e. 221 per	watersh	ed) transj	ported 55	% of the	sedimen	

• Average concentrations of atrazine exceeded the drinking water standard, even when a half-rate application was used on the disked watersheds


• Atrazine concentrations were highest in the no-till watersheds

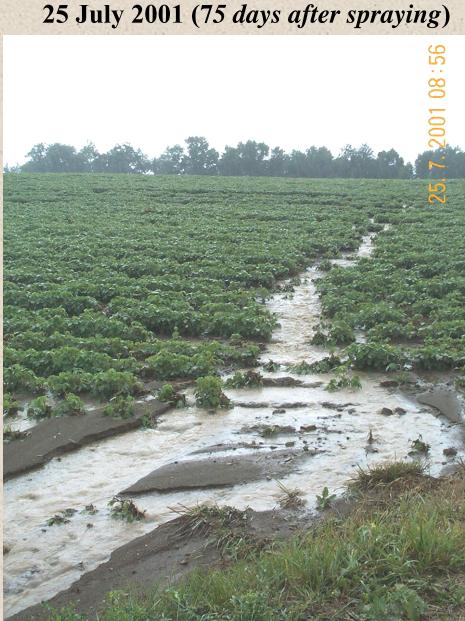
Atrazine concentrations followed a similar pattern for all tillage treatments. Most of the concentrations exceeding the drinking water standard occurred within 100 days after application.


<u>% Atrazine Loss in Top 5 Events</u> 9 Crop Years ~ 1800 Storms								
	<u>Chisel-Tilled</u> <u>No-Till</u> <u>Disked</u>							
Event Rank	WS 109	WS 123	WS 113	WS 118	WS 111	WS 115	WS 127	
1	34	36	27	38	64	37	56	
2	15	21	17	17	27	22	14	
3	14	13	15	9	2	18	10	
4	10	6	11	6	2	15	9	
5	7	5	6	4	1	3	5	
Total	80	81	75	74	<i>95</i>	<i>95</i>	94	
Single	e worst ev	vent transj	ported an	n average	of 42%	of the atra	azine	

and the top 5 transported 85%

A linear plot of atrazine concentration accentuates the importance of the first few runoff events after application.

Flow-Weighted Metribuzin Concentration (9 Soybean Years)

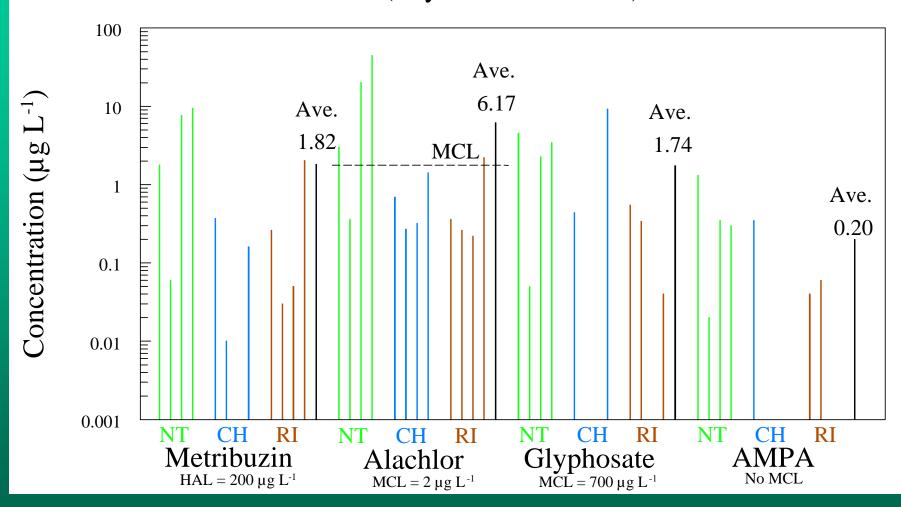

- Average concentrations of metribuzin never exceeded the drinking water standard for any of the tillage treatments
- Metribuzin concentrations were highest in the no-till watersheds, and were as high as 562 $\mu g \ L^{-1}$ for an individual event

<u>% Metribuzin Loss in Top 5 Events</u> 9 Crop Years ~ 1800 Storms							
<u>Chisel-Tilled</u> <u>No-Till</u> <u>Disked</u>							
Event Rank	WS 109	WS 123	WS 113	WS 118	WS 111	WS 115	WS 127
1	50	42	21	24	81	76	85
2	30	30	16	22	6	8	8
3	17	25	15	12	5	7	3
4	2	2	13	10	4	2	2
5	<1	1	12	5	3	1	1
Total	<i>99</i>	<i>99</i>	78	73	<i>99</i>	94	99

Single worst event transported an average of 54% of the metribuzin and the top 5 transported 92%

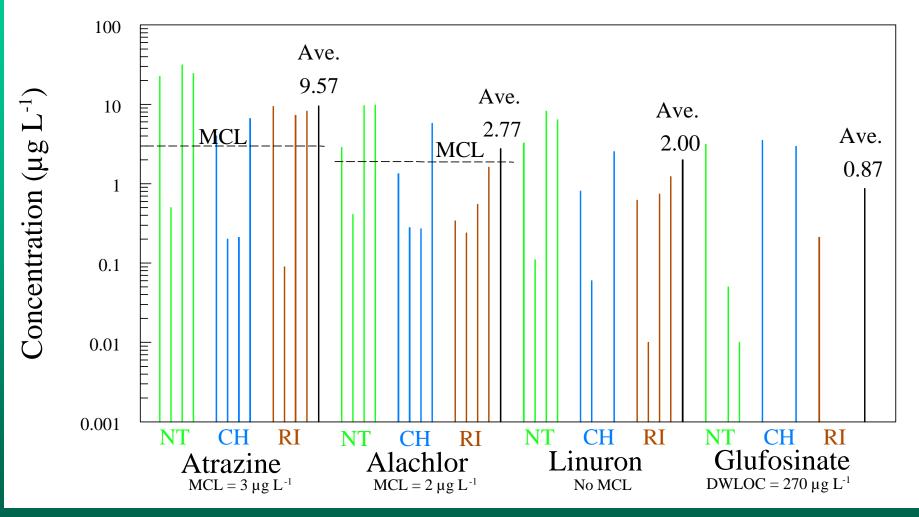
- 16.5 mm of runoff (28th largest event)
- 85% of metribuzin loss in 9-yr period

- 45.7 mm of runoff (4th largest event)
- 2% of metribuzin loss in 9-yr period



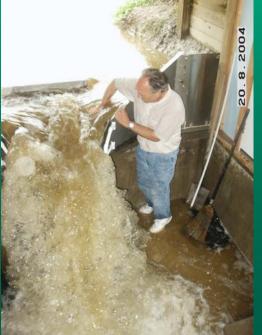
With genetically modified, herbicide-tolerant crops (GMO's) persistent, residual herbicides can be replaced with readily degradable, contact herbicides

Roundup-Ready TM soybean and Liberty-Linked TM corn were planted on the 7 conservation tillage watersheds and both herbicide types were applied



Flow-Weighted Herbicide Concentrations (Soybean 1998-2001)

In soybean years flow-weighted alachlor losses exceeded its MCL while glyphosate was well below its MCL


Flow-Weighted Herbicide Concentrations (Corn 1998-2001)

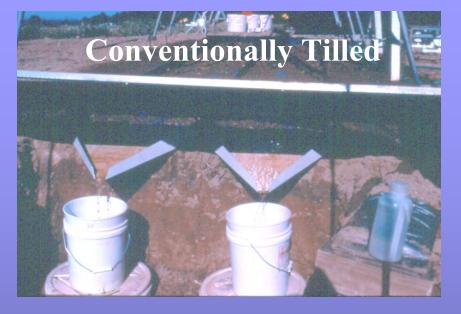
In corn years flow-weighted atrazine and alachlor losses exceeded their MCLs while glufosinate was well below its acute DWLOC

Extreme Events

Points to Remember

- A few big storms cause most of the soil loss from row cropped watersheds
- Conservation tillage, and no-till in particular, can reduce soil losses from these events to acceptable levels
- Herbicides losses are largely a result of a few infrequent events, but are mainly dependent on storm timing relative to herbicide application rather than storm size
 - In-field management practices, such as tillage or reduced-rate herbicide usage, will not totally alleviate this concern
- Sampling, modeling, and multi-tiered conservation systems must account for extreme events to be effective
 - Long-term watershed studies are essential

Grassed Waterway Research



- We have installed NRCSdesigned, paired grassed waterways downstream from two watersheds
- Filter socks filled with compost have been placed in the waterways

- Most herbicide loss occurs in a few events shortly after application
- Because of concentrated flow, grassed waterways are usually ineffective in reducing herbicide concentrations

Runoff & Erosion (Simulated Rainfall)

	Runoff				Soil Loss		
Rep	No-Till	1 st yr CT	13 th yr CT	No-till	1 st yr CT	13 th yr CT	
		(mm)			(kg/ha) -		
1	12.0	22.8	29.1	-	2495	3307	
2	1.9	23.7	31.3	-	2198	3867	
Average	e 6.9	23.2	30.2	0	2347	3587	

Note: Approx. 64 mm of rain was applied in 1 hr to 4.7 m² plots on 19-23 May 1997

Most of the erosion control benefits of no-till can be lost with a single year of tillage